1,422 research outputs found

    Covariant transport approach for strongly interacting partonic systems

    Full text link
    The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results - including the partonic equation of state - in thermodynamic equilibrium. Scalar- and vector-interaction densities are extracted from the DQPM as well as effective scalar- and vector-mean fields for the partons. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Since the dynamical quarks and antiquarks become very massive close to the phase transition, the formed resonant 'pre-hadronic' color-dipole states (qqˉq\bar{q} or qqqqqq) are of high invariant mass, too, and sequentially decay to the groundstate meson and baryon octets increasing the total entropy. When applying the PHSD approach to Pb+Pb colllisions at 158 A\cdotGeV we find a significant effect of the partonic phase on the production of multi-strange antibaryons due to a slightly enhanced ssˉs{\bar s} pair production from massive time-like gluon decay and a larger formation of antibaryons in the hadronization process.Comment: 12 pages, 6 figures, to be published in the Proceedings of the 26th Winter Workshop on `Nuclear Dynamics', Ochto Rios, Jamaica, 2-9 January, 2010

    Exploring Pathways to Food Science Careers in Southern California: A Case Study in Food Science Career Development

    Get PDF
    Southern California is a diverse region that is home to a high concentration of food science companies, with an increasing demand for additional food scientists and technologists to join this workforce. Despite this abundance of food science companies and the high demand for jobs, there is currently a shortage in the number of qualified food scientists and technologists in the region. This shortage is also observed within higher education, with declining enrollments in the food science graduate and undergraduate programs across Southern California. Here, we conduct a case study to explore the factors that influence students from Southern California to pursue or not pursue careers in food science. We surveyed both undergraduate and graduate students currently enrolled in food science as well as industry professionals in the region to determine sources of knowledge about the discipline, and motivations and barriers for pursuing careers in food science. We also surveyed high school educators in the region to gain additional perspectives on how food science is being introduced at the secondary level, if at all. Our results demonstrate that many students and high school educators are not knowledgeable about career options within food science and that students who are pursuing food science largely report similar motivations for pursuing the discipline as those currently working in the food science industry. We conclude by discussing implications for the food science education community within Southern California and beyond

    Application of ERTS-1 satellite imagery for land use mapping and resource inventories in the central coastal region of California

    Get PDF
    ERTS-1 satellite imagery has proved a valuable data source for land use as well as natural and cultural resource studies on a regional basis. ERTS-1 data also provide an excellent base for mapping resource related features and phenomena. These investigations are focused on a number of potential applications which are already showing promise of having operational utility

    Theoretical and numerical studies of chemisorption on a line with precursor layer diffusion

    Get PDF
    We consider a model for random deposition of monomers on a line with extrinsic precursor states. As the adsorbate coverage increases, the system develops non-trivial correlations due to the diffusion mediated deposition mechanism. In a numeric simulation, we study various quantities describing the evolution of the island structure. We propose a simple, self-consistent theory which incorporates pair correlations. The results for the correlations, island density number, average island size and probabilities of island nucleation, growth and coagulation show good agreement with the simulation data.Comment: 17 pages(LaTeX), 11 figures(1 PS file, uuencoded), submmited to Phys. Rev.

    Kaon and Antikaon Production in Heavy Ion Collisions at 1.5 AGeV

    Full text link
    At the Kaon Spectrometer KaoS at SIS, GSI the production of kaons and antikaons in heavy ion reactions at a beam energy of 1.5 AGeV has been measured for the collision systems Ni+Ni and Au+Au. The K-/K+ ratio is found to be constant for both systems and as a function of impact parameter but the slopes of K+ and K- spectra differ for all impact parameters. Furthermore the respective polar angle distributions will be presented as a function of centrality.Comment: 4 pages, 4 figures, SQM2001 in Frankfurt, Sept.2001, submitted to Journal of Physics

    Strangeness Enhancement in Heavy Ion Collisions - Evidence for Quark-Gluon-Matter ?

    Get PDF
    The centrality dependence of (multi-)strange hadron abundances is studied for Pb(158 AGeV)Pb reactions and compared to p(158 GeV)Pb collisions. The microscopic transport model UrQMD is used for this analysis. The predicted Lambda/pi-, Xi-/pi- and Omega-/pi- ratios are enhanced due to rescattering in central Pb-Pb collisions as compared to peripheral Pb-Pb or p-Pb collisions. A reduction of the constituent quark masses to the current quark masses m_s \sim 230 MeV, m_q \sim 10 MeV, as motivated by chiral symmetry restoration, enhances the hyperon yields to the experimentally observed high values. Similar results are obtained by an ad hoc overall increase of the color electric field strength (effective string tension of kappa=3 GeV/fm). The enhancement depends strongly on the kinematical cuts. The maximum enhancement is predicted around midrapidity. For Lambda's, strangeness suppression is predicted at projectile/target rapidity. For Omega's, the predicted enhancement can be as large as one order of magnitude. Comparisons of Pb-Pb data to proton induced asymmetric (p-A) collisions are hampered due to the predicted strong asymmetry in the various rapidity distributions of the different (strange) particle species. In p-Pb collisions, strangeness is locally (in rapidity) not conserved. The present comparison to the data of the WA97 and NA49 collaborations clearly supports the suggestion that conventional (free) hadronic scenarios are unable to describe the observed high (anti-)hyperon yields in central collisions. The doubling of the strangeness to nonstrange suppression factor, gamma_s \approx 0.65, might be interpreted as a signal of a phase of nearly massless particles.Comment: published version, discussion on strange mesons and new table added, extended discussion on strange baryon yields. Latex, 20 pages, including 5 eps-figure
    corecore